NO4-18358

3rd NASA Symposium on VLSI Design 1991 6.2.1

Direct Kinematics Solution Architectures
for Industrial Robot Manipulators:

Bit-Serial Versus Parallel

J. Lee
Department of Electrical Engineering
University of Houston
Houston, TX 77204-4793

K. Kim
Superconducting Super Collider Lab.
2550 Beckleymeade Avenue
Dallas, TX 75237

Abstract - This paper investigate a VLSI architecture for robot direct kine-
matic computation suitable for industrial robot manipulators The Denavit-
Hartenberg transformations are reviewed to exploit a proper processing ele-
ment, namely an augmented CORDIC. Specifically, two distinct implementa-
tions are elaborated on, such as the bit-serial and parallel. Performance of each
scheme is analyzed with respect to the time to compute one location of the
end-effector of a 8-links manipulator, and the number of transistors required.

1 CORDIC Techniques

The matrix A; describing the jth link is proposed to be implemented via 4 CORDICs:
parallel two for the w-axis operation, and another parallel two for the x-axis. Since, the
rotation and translation are disjoint each other, the 4 CORDIC can be done via a 2-stages
cascade [5].

Let the jth joint orientation vector denote by p;, where p; = A;p;_,. Consider an
intermediate vector pf, between p; and p;_q:

pi= T1'a'mz(w-,~_1,dj)Rot(?.uj_l,0.,-);1)_‘;-l : stage — 1 (1)
p;‘ = Trans(z;,a;)Rot(z;,%;)pj-1 : stage — 2. (2)

One set of transformations for each stage, i.e. Trans(w,d)Rot(w,8), is a block-diagonal
matrix and can be orthogonally implementable by two 2x2 matrix transformations. Note
that is implementable through an augmented PE, rather two different PEs, observing that
Trans(w, d) is a trivial operation. Then,

2]
;i Rot(w;,8;) (0]

pi=1 - | = . . . pf. (3)
w; 0 : Trans(w;,d;)
1

6.2.2

p; (also, similarly for p#) is decomposed into two blocks, e.g the first two elements of p;
becomes one vector X;:

p; = [Xj;w;, 1) = [Rot(w;, 8;);w; + dj, 1], (4)

where wj is for the w-axis component of the vector p;, and X; for x- and y-axis components
rotated by 6;. In a similar way, for pJ we can choose a rotated vector of y- and w-axis
disjointly througﬁ axis shuffling. Finally, consecutive n-pairs of rotation and translation
can be implemented via a 2n-stages cascade. We will name each stage as a macro-PE
(or, an augmented PE), which ¢an be 2n-pipelined to compose an n-links computation
processor. Not to differentiate the two different sets of transformations, w-axis and x-axis
respectively, we employ index 7 in unified notations for a macro-PE: for a referemnce axis
w,,there are rotation of #; and translatxon of d,, Xi-1 = (zi1,%i—1) for an input, and
= (z;,%) for an output. N

Each macro-PE including one Trans(w,, d; ;) and one Rot(w,, 6;) can be implemented,
as in Fxgure l.a. One—Jomt processo?Ts showﬁ;ﬁ Figure 1.b. Finally, for a 8-joints system,
Figure 1.c shows a fully pipelined structure._ S

From this point, we will concentrate on unplementatwn of a macro- PE Observmg
that Rot and Trans functions are dxs_]omt each other, let us isolate the rotation part at
first. This vector rotation for X; = (a:,,y,) by the angT 8; can be realized by an iteration
a.lgonthm called CORDIC [4] instead of computing trigonometric functions and ‘applying
matrix multxphcatxon CORDIC realizes a vector rotation by a partxal sum of micro- angle
rotations with a pre-fixed s sequence of angIes When the rotatlon macro-angle is represented
as a sum of decomposed micro-angles, i.e §; = 37_; 8;x,

v _ n 1 —tane,-,k . ' ' o
1 T A]x O

where kj, = cosé, x is a micro-scale composing a final scale factor, expia.ined later. Such
a specific form of the pre- -fixed micro-angle sequence as tan™' 2~ s attractive for VLSI

implementation since it is composed only of addltlons shiftings, and a arctangent Iookup
table For the snnphcxty of notation, subscnpt 1 mdexmg a certain stage will be omitted,

~and X,Y and Z stand for a.brxdged notations for those having subscrxpt i.

Non-redundant : The micro- -iterations of the conventional (hereafter, it will be ca.]led
non-redundant) CORDIC are 3 finear recursive equatlons X recurrence (X-rec.j, Y-
- recurrence (Y-rec.) and Z-recurrence (Z-rec.) [4].

X[+1] = X[+ 027V
Yi+1] =Y} - 027 X[4]
Zli+1] = Z[i] - ostan™1 27 (6)
With an initial value of Z[0] = §;, CORDIC rotates initial values of X[0] and Y[0], to the
last value X[n] and Y[n], while making Z 7] close to zero, so that Z[n] is forced to be zero.
With n number of iterations, n-bit accuracy of X and Y in the output can be achieved.

I

P

L

L

3rd NASA Symposium on VLSI Design 1991 6.2.3

9 g Rot) (Transje— d6
ag—p(rans) (Rot *—We
Y Yy v
*s Yo Yo

Figure 1: CORDIC-based Pipelined Architecture for Direct Kinematics Computation: a.
A macro-PE, One-stage from an orientation to an intermediate, b. 2-stages cascade, An
A; transformation module for a link, c. A complete pipelined Computation Module for
6-links system.

6.2.4

For a known angle, the direction of the rotation, o; can be pre-computed or calculated one
by one on-the-fly using the following selection function.

1 i ZE]) >0
"‘:{—1 if Z[i] < 0 (7)

The CORDIC rotatir)n does not Vir)rie;erve the input normA To get a rotated vector having
the same length as the 1nput (X[] Y[O]) X[n](Y[n]) needs to be compensated by a scaling

factor K :
n] Yn T
K= “[X[O o] H J1+ o?2-% (8)

where ||-|| stands for the norm of the vector. Note that K is constant for the non-redundant
scheme since ¢; is in {-1, 1}.

Redundant : Non- redundant CORDIC is slow mherently with delay of O(n?) due to

1ts recursiveness and sena.l dependency, since a micro-rotation with delay O(n) should be

(carry free addition such as carry save or SIgned digit addltlon) to determine the du‘ectron
of the rotation 6;, based on an estimate instead of an exact value [9]. The redundant
arithmetic gives a delay of O(1) instead of O(n), and the estimation of direction is necessary
not to erode the advantage of O(1). This requires the modification of the recurrences and
selection function. This redundant CORDIC scheme produces the output about 4 times
faster than the non-redundant. However, it introduces additional cost since the scale factor
K is variable depending on a macro-angle by allowing 4; to be in {-1, 0, 1}.

Constant-Factor-Redundant : To reduce implementation cost of redundant CORDIC,

it would be good to have a constant scale factor by forcing ¢; in {-1, 1}. However, since §;
is determined from an estimate, there arises a convergence assurance question. There was
proposed a scheme appending correctlng iteration stages at proper positions [10]. Along
to this 1dea, the number of extra correcting iterations is further reduced by dividing the
micro-iterations (for 7 = 0 to ¥ = n — 1) into two groups: one group where the direction of
the rotation is in {-1, 1} for i =0 toi=n/2 and the other in {-1,0,1} for i = (n +1)/2
to i = n — 1 correcting iterations by 50 % since correcting iteration is not needed for the
second half of the micro-iterations and we still obtain a constant scale factor K since the
value of K in n-bit precision does not depend on the & value for (n + 1)/2 < i < (n~1). Z-
recurrence also can be modified so that 4; is determined quickly by looking at a few most
signiﬁcant bits. This new scheme is called Cons'tant'Factor Redundant- CORDIC(CFR-

below.
X[i+1) = X[+ 827 Y]
Y[i+1]=Y[] - 6.2 X[4] _
Uli + 1] = 2(Ufs] - 6:2 tan™' 277) N (9)

mom m

CYIRI e

e

Tl T[]

3rd NASA Symposium on VLSI Design 1991 6.2.5

where Uli] is for the implementation simplicity, which is equal to 2'Z[1], and the selection
function is given as follows:

1 0[] >0

5 = or U[z] :0'01 <nf2 (10)
0 Ul]l=0Nni=>2n/2
-1 f U[i] <0

When ¢ fractional bits are used in the estimate value, i.e., Ui] is computed using ¢
fractional bits of redundant representation of U[i], the following correcting iteration need
to be included, where the interval between indexes of correcting iterations should be less
than or equal to (¢ — 1) up to the last iteration index equal to n/2. When the correction
stage is necessary at the jth step of micro-iteration,

UC(j + 1] =U[j + 1] — 265 27tan"7277 (11)

with the direction of the rotation ¢ determined from the same selection function of
eq.(10), except being decided based on Ulj + 1] instead of U[3].

So far, we discussed about recursive structures of several CORDIC schemes to imple-
ment the rotation part in the basic PE, as depicted in Figure 1. The PE, augmented by a
translator, necessitates scaling operation at each stage, because shuffling of the output at
each stage makes continuous accumulation of the scaling factor complex to be processed
at the final stage. The scaling operation has been solved either by an explicit way or an
implicit. The explicit way is dividing the rotated vector by a constant, which is known for
the non-redundant, to be calculated while running the micro-steps of CORDIC [4,9]. The
division can be processed by another CORDIC (in a linear mode) or a divider. The implicit
approach reconfigures the sequence of micro-iterations of the CORDIC, eventually to have
a different norm from that without scaling micro-iterations. Scaling micro-iterations target
in general at making the adjusted scaling factor in a form of 2¢ or 1, which can be easily set
to the unit size. Each micro-iteration can be composed of i) reduction axis-scaling [11],
ii) repetition of vector-scaling, iii) expansion axis-scaling or combinations thereof [12].
Relevant issues regarding solution search are to be further studied, more than the greedy
method or the decomposed [13]. In summary, the explicit scaling almost doubles the
system complexity, while the implicit increases 25 % for the non-redundant and about 30
% for the redundant.

2 Application to Direct Kinematics

In this section, we design an architecture for the direct kinematics computation, based on
CFR-CORDIC. The data-path is the parallel. To analyze its performance, we will define a
new measure, namely one-position calculation time. Via this measure, we will also analyze
performance the bit serial architecture similarly implementable as in

6.2.6

2.1 Performance Measure

Let’s define the following parameters.

b; : the number of bits in each input z,y and w

by : the number of bits in each output

nys : the number of links (=6)

fc : the available data shift rate

A : the step time per micro CORDIC iteration

fi : the input bit rate

Additionally, we define a measure parameter Th,

Ts = step-time(A) * number of steps,

to compare the performance of various schemes. For a dlscrete element 1mpTemer1tat10n
A corresponds to one smgle external clock time 1 / f Note that A varies dependiﬂg on a
particular implementation of a macro-PE. Without loss of generality, let’s define the unit
of A to be 1 for one-bit full addition time. The input processing rate can be alternatively

interpreted as

£—<T1A (12)

‘which limits the maximum rate of mput vector sa.mphng to be processable through an
implemented processor

2. 2 Performance Comparlson . P ot

Bit Serial: A macro-PE using serial data path and arithmetic units for CORDIC is shown
in Figure 2 [6] Figure 2.a shows symmetric components of a bit-serial PE in x, y and w
representation, and Flgure 2.b is for the detail of each block (X-recurrence or Y—recﬁrrierge)
employing bit serial arithmetic. W-recurrence is in Figure 2.c, and Z-recurrence in Figure
2.d. The x and y components of the input vector X;_ are taken initially as X[0] and

Y[0], and the initial angle Z[0] is set to the corresponding joint angle. After performing n

micro-iterations, CORDIC produces n-bit precision outputs leading to X;.’
In the serial scheme without macro-pipelining, denote a basic step-time as A, which
is equivalent to A. To use one adder recursively n; times to process an ny links, o

Ta, = Arx n;(bf + b;(b; + logsb;)),

where the output has by bxts buffer.

CFR-Redundant Parallel : To i xncrease the throughput of the previous, the bit-
serial PEs can be substituted by those using parallel arithmetic. When parallel arithmetic
and non-redundant CORDIC are adopted, the corresponding parameter becomes

T, = Az *nf(b + logzb)

where A; equals to the time for one micro-rotation (time for variable shifter plus time for
carry-propagate addxtxon) approximately 2log, b; assuming fast vanable shifter and carry-

propagate adder. The step time can be further shortened by adoptxng CFR- CORDIC

?

e e

Hm

O A T N []

e

3rd NASA Symposium on VLSI Design 1991 6.2.7

S Y (%)

1

l L l Register _
v > X ()
Y. W1 |

e

(¢}
[S180 | " 41

Figure 2: A bit-serial PE : a. A macro-PE with X-, Y- and W-recurrence, b. Detail of

either block, c. W-recurrence, d. Z-recurrence.

638

whete a carry free adder (s:gned digit adder) is replaced for carry- propagate adder. Figure
3.2 shows & facro-PE in components; and Figure 3.b is for the detail of each block (X-
técurrénce or Y—recurrence) employing parallel/redundant arithmetic. Z-recurrence is in
Flgure 3.c.

1i-1 Iy -1 Wq
XM Y
Mux Mux d,
|
vy vV l
X- r-ec :Lc_;: Y-rec. +
X[+1] YG+1) l
v w ,
. vy, W
i cx as] i
33)
Xm(; b)) ;’rr&j‘(zs?iﬁj“) dudyt 7
f =
Shifter -4 i
6, —» CPadder |
X(-1,1 -t g,
*_(: % o,
[CPvaddcr] Register
[_Registr 1 | 7
Y
y 1]

X[+1] (or Y[i+11)

(3.b)

Figure 3: A parallel/redundant PE: a. A macro-PE with X- and Y-recurrence, b. Detail
of either block, c. Z-recurrence.

iy

i

SR

ORISR BRI

3rd NASA Symposium on VLSI Design 1991 6.2.9

Description | A;/A Ta, |Processing| TRs
rate estimate

Bit-serial 1 1200A 600K 2K

(parallel) 4M 12K

Parallel(CFR) 5 500A M 6K

(parallel) 10M 40K

Table 1: Time and compleﬁty comparison

In this case, the sign of Z[i] at the ith micro-iteration can not be detected by looking
at the most significant bit since Z[i] is in redundant number representation. To determine
the sign of Z[i] quickly by looking at a few significant bits, CFR-CORDIC uses an estimate
of shifted-Z[i] (U[1]) using t fractional bits. As discussed earlier, the number of fractional
bits used for the estimate also determines the frequency rate of a correcting iteration: more
fractional bits are used, less number of correcting iterations are required. Let the number
of correcting iterations denoted by 7. The corresponding Ta, becomes

Ta, = Az xng(b; + logzb; + n)

where A; equals to the time for carry-free addition plus the time for the maximum of a
selection function and a variable shifter, approximately (1 + logsb;). Note that a practical
number of correcting iterations is much smaller than b;, e.g. 1 for the 16bit resolution.
Hence, we can approximate Ta, to be that for the redundant without a correcting iteration.

For a case, b; = 12, b; = 16, the estimated T is summarized in Table 1. To get first
order estimates of available speed and area, we use a figure that one full adder (also one
bit shifter) requires approximately 50 TRs and one 20nsec clock cycle [14].

3 Conclusion

We have examined various kind of CORDIC schemes as a macro-PE module for the
direct kinematics processor, and showed that its micro-level regularity is suitable for
VLSI implementation, depicted along with specific schematics which include the conven-
tional non-redundant, the redundant and the Constant-Factor-Redundant schemes. The
cost-effectiveness of selected architectures has been analyzed using bit-serial, parallel or
pipelined structure with respect to the time and the number of modules required, to
compute one location of the end-effector for a 6-links manipulator, given a set of angle
measurements The comparison table exhibits the CORDIC-based robotics processor as a
prospective solution in VLSI to be used for a wide range of kinematics calculation require-
ment, compromising the size versus speed.

6.2.10

References

(1] J. Denavit and R. Hartenberg, "A Kinematic Notation for Lower-Pair Mechanisms
Based on Matrices,” Journal of Applied Mechanics, pp.215-221, 1955.

[2] P. Nanua, K. Waldron and V. Murthy, "Direct Kinematic Solution of a Stewart Plat-
~ form,” IEEE Trans on Robotics and Automation, Vol 6, No 4, pp.438-444, Aug. 1990.

[3] D. Moldovan and G. Lee, "On the Use of Parallel Architectures for Robotic Manip-
ulators: The Kinematics Problem,” Int J. Robotics and Automation, Vol 1, No 2,
pp-47-53, 1986.

[4] J. Walther, "A Unified Algorithm for Elementary Functions,” AFIPS Spring Joint
Computer Conference pp.379-385, 1971.

[5] C. Lee, "CORDIC-based Architectures for Robot Direct Klnematlcs and Jacobian

Computatlon,” 3rd Int .S'ymp Intell:gent Control, pp 609 614 1988.

[6] R. Harber et. a.l ”Blt serlal CORDIC Clrcuxts for Use i in a VLSI Silicon Compller

Int. Conf. Circuit and Sy.stem PP- 154- 157,1989. -~ -

[7] M. Kameyama, T. Matsumoto and H. Hideki, "Implementation of a High Performance
LSI for Inverse Kinematics Computatlon,” IEEE Int. Conf. Robotics and Automation,
pp.757-762, 1989 :

[8] H. Kung, "Let’s De51gn Algorxthms for VLSI systems,” Caltech Conf. VLSI PP- 65-90.
7 1979.

[9] M. Ercegovac and T. Lang, "Redundant and On-Line CORDIC: Aﬁplication to Matrix
triangularization and SVD,” IEEE Trans. on Computers Vol. C-39, No 6, pp.725-740,
June 1990.

[10] N. Takagl, T. Asada and S. Yajlma "Redundant CORDIC methods with a constant
scale factor for sine and cosine computatlon” Submitted to IEEE Trans. on Computers,
1989.

[11] G. Haviland and A. Tuszynski, ”A CORDIC Arithmetic Processor Chip,” IEEE Trgns.

on C’omputer.s, Vol C 29 No 2 PP 67§ 79 Feb. 1980

(12] J. Delosme, ”VLSI Implementatlon of Rotations in Pseudo-Euclidean Spaces ” Proc.
of TC'ASSP, Pp- 937- 930 1983, o mlsme i > ¢ s

1] J. Lee and T. Lang, ”Matnx trxangulanzatlon by fixed- pomt redundant CORDIC

with a constant scale factor,” Proc. SPIE Conference on Advanced Signal Processing
Algorithms, Architectures, and Implementations, July 1990.

[14] J. Harding, T. Lang and J. Lee, A Comparison of Redundant CORDIC Rotation
Engines,” Int. Conf. Computer Design 91, Oct. 1991.

[IR0 11 00 IR N BIR8 | DR

Concomtmman wo B i

